

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-800480S5LMQW-T00
APPROVED BY	
DATE	

- ☐ Preliminary Specification
- **■** Formal Specification

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116號 4樓(東方科學園區 A棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

Approved by	Checked by	Organized by
Patrick	Kokai	Mark

This Specification is subject to change without notice.

Date: 2022/07/01 AMPIRE CO., LTD.

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2022/07/01		New Release	Mark

1. INTRODUCTION

Ampire Display Module is a color active matrix TFT-LCD that uses amorphous silicon TFT as a switching device. This model is composed of a TFT-LCD panel, timing controller. This TFT-LCD has a high resolution (800(R.G.B) X 480) and can display up to 262,144 colors .

1-1. Features

- 7" WVGA (16:9 diagonal) configuration
- Input interface voltage: 3.3V
- Data enable mode
- Resistive touch panel

1-2. Applications

- Portable TV
- Car user DVD
- Industrial application
- HMI (Human machine interface)

2. PHYSICAL SPECIFICATIONS

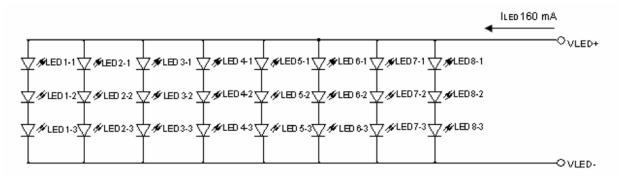
Item	Specifications	unit
Display resolution(dot)	800RGB (W) x 480(H)	dots
Active area	152.4 (W) x 91.44 (H)	mm
Pixel pitch	0.1905 (W) x 0.1905 (H)	mm
Color configuration	R.G.B Vertical stripe	
Overall dimension	165.0(W)x104.44(H)X5.2(T)	mm
View direction	6 O'clock	
Brightness	310 nit	cd/m ²
Contrast ratio	1000 : 1	
Backlight unit	LED	
Display color	262,144	colors

3. ABSOLUTE MAX. RATINGS

ITEM	SYMBOL	MIN	MAX	UNIT
Power Supply Voltage for LCD	Vcc	0.3	6.0	V
Operation Temperature	Тор	-20	70	$^{\circ}\!\mathbb{C}$
Storage Temperature	Tstg	-30	80	$^{\circ}\!\mathbb{C}$

The following values are maximum operation conditions , If exceeded , it may cause faulty operation or damage $\,$

4. ELECTRICAL CHARACTERISTICS


4-1 TFT LCD Module voltage

ITEM		SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
Power S For LCD	upply Voltage	Vcc	3.0	3.3	3.6	V	
Power Supply Current For LCD		Icc	-	T.B.D	ı	mA	VCC=3.3V
LED Bac	klight Voltage	V_{BL}	-	8.85	-	V	For reference
LED Bac	LED Backlight Current		-	160	-	mA	
Logic	Threshold Voltage(High)	V_{TH}	0.7Vcc	-	Vcc	V	
Input Voltage	Threshold Voltage(Low)	V _{TL}	0	-	0.3Vcc	V	

4-2 LED Driving Conditions

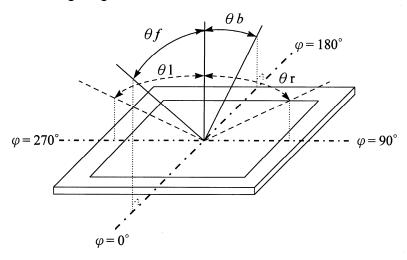
ITEM	SYMBOL	MIN	TYP	MAX	UNIT	CONDITION
LED Backlight Voltage	V_{BL}	-	9.9	-	V	Note1
LED Backlight Current	I _{BL}	-	160	-	mA	
LED Life Time	-	10000	20000		Hr	Note2

Note 1 : There are 8 Groups LED shown as below , V_{LED} =9.9V , I_{LED} =160mA.

Note 2 : Brightess to be decreased to 50% of the initial value.

5. INTERFACE

	LINI AOL	
Pin no	Symbol	Function
1	GND	Ground
2	GND	Ground
3	NC	No connection
4	VCC	Power supply for Digital Circuit
5	VCC	Power supply for Digital Circuit
6	VCC	Power supply for Digital Circuit
7	VCC	Power supply for Digital Circuit
8	NC	No connection
9	DE	Data Enable Timing Signal
10	GND	Ground
11	GND	Ground
12	GND	Ground
13	B5	Blue data (MSB)
14	B4	Blue data
15	B3	Blue data
16	GND	Ground
17	B2	Blue data
18	B1	Blue data
19	B0	Blue data (LSB)
20	GND	Ground
21	G5	Green data (MSB)
22	G4	Green data
23	G3	Green data
24	GND	Ground
25	G2	Green data
26	G1	Green data
27	G0	Green data (LSB)
28	GND	Ground
29	R5	Red data (MSB)
30	R4	Red data
31	R3	Red data
32	GND	Ground
33	R2	Red data
34	R1	Red data
35	R0	Red data (LSB)
36	GND	Ground
37	GND	Ground
38	DCLK	Data Clock :Latch Data at Falling Edge
39	GND	Ground
40	GND	Ground


Note: User's connector part number is CF39402D0R0-NH manufactured by CviLux or equivalent

6. OPTICAL CHARACTERISTICS

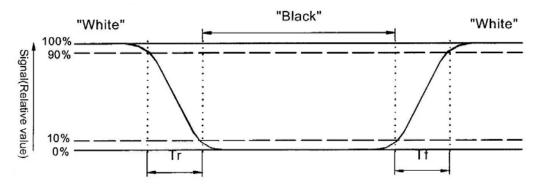
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Front	θf		50 60		50 60		
Viewing	Back	θb	CD > 10	60	70			(1)(2)(2)
Angle	Left	θΙ	CR≧10	60	70		deg.	(1)(2)(3)
	Right	θr		60	70			
Contrast ratio		CR	Θ=Φ=0°	700	1000			(1)(3)
Response Tin	20	T _r			5	10	ms	(1)(4)
Response IIII	ie	T_f	Θ=Φ=0°		15	20	ms	(1)(4)
Color	Color		Θ-Ψ-0	0.26	0.31	0.36		(4)
chromaticity	White	Wy		0.28	0.33	0.38		(1)
Luminance		L	Θ=Φ=0°	250	310	-	cd/m ²	(1)(5)
Color Saturati	on	NTSC	Θ=Ф=0°		50		%	(1)(5)(6)

Note 1: Ta=25°C. To be measured on the center area of panel after 10 minutes operation.

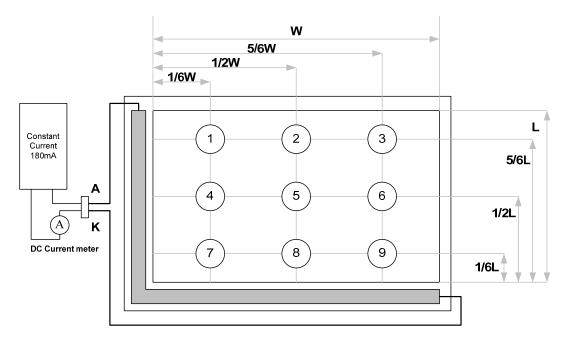
Note 2: Definition of Viewing Angle

Note 3: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.


Contrast ratio(CR)= Photo detector output when LCD is at "White" state
Photo detector Output when LCD is at "Black" state

Note 4: Definition of response time:


Date: 2022/07/01

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising

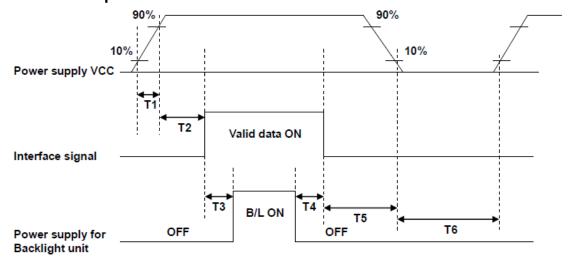
time) respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 5: Luminance is measured at point 5 of the display.

Note 6: Definition of Luminance Uniformity

Date: 2022/07/01

 $\Delta L = [L(min.) \text{ of 9 points } / L(max.) \text{ of 9 points}] X 100\%$


7. Timing

Item	Symbol		Values	Unit	Remark	
nom	Symbol	Min.	Тур.	Max.	Onit	Remark
Horizontal Display Area	thd	-	800	-	DCLK	
DCLK Frequency	fclk	26.4	33.3	46.8	MHz	
One Horizontal Line	th	862	1056	1200	DCLK	
HS pulse width	thpw	1	6	40	DCLK	
HS Blanking	thb	46	46	46	DCLK	
HS Front Porch	thfp	16	204	354	DCLK	

Item	Cumbal		Values	Unit	Remark	
itelli	Symbol	Min.	Тур.	Max.	Unit	Remark
∨ertical Display Area	tvd	-	480	-	TH	
∨S period time	tv	510	525	650	TH	
VS pulse width	tvpw	1	3	20	TH	
√S Blanking	tvb	23	23	23	TH	
VS Front Porch	tvfp	7	22	147	TH	

Note: Frame rate is 60±5Hz

7.1 Power Sequence

Parameter		Unit		
Parameter	Min.	Тур.	Max.	Unit
T1	1		2	ms
T2	200			ms
T3	180			ms
T4	180			ms
T5	200			ms
T6	1000			ms

8. Touch Panel ELECTRICAL SPECIFICATION

Parameter	Condition	Standard Value	
Terminal Resistance	X Axis	200 ~ 900 Ω	
	Y Axis	160 ~ 640 Ω	
Insulating Resistance	DC 25 V	More than $20 M\Omega$	
Linearity		≦1.5 %	
Notes life by Pen	Note a	100,000 times(min)	
Input life by finger	Note b	1,000,000 times (min)	

Note A.

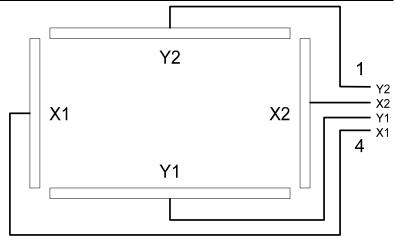
Notes area for pen notes life test is 10 x 9 mm.

Size of word is 7.5 x 6.75 Shape of pen end : R0.8mm

Load: 250 g

Note B

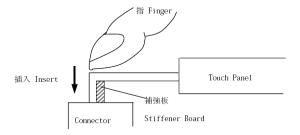
By Silicon rubber tapping at same point


Shape of rubber end: R8mm

Date: 2022/07/01

Load : 250gf Frequency : 5 Hz

Interface


No.	Symbol	Function
1	Y2	Touch Panel Top Signal in Y Axis
2	X2	Touch Panel Right Signal in X Axis
3	Y1	Touch Panel Bottom Signal in Y Axis
4	X1	Touch Panel Left Signal in X Axis

Attention

- (1) Since touch panel is consist of Glass, pls. be careful your hand and other part from injury at handling. You must wear gloves at handling.
- (2) Do not put a heavy shock or stress on touch panel.
- (3) Do not lift Touch Panel by cable (FPC).
- (4) Do not add any stress only film face.
- (Ex. Don't transfer the panel by film face with vacuum)
- (5) Pls. use dry cloth or soft cloth with neutral detergent (after wring dry) or one with ethanol at cleaning. Do not use any organic solvent, acid or alkali solution.
- (6) Do not pile Touch Panel. Do not put heavy goods on Touch Panel.
- (7) Do not bend a cable of Touch Panel for prevent happen to line cut failure.

Please don't uses following method for insert the cable to connector

- (8) Please pay attention for the matter as stated below at mounting design of touch panel & enclosure
- -1. Enclosure support to fix touch panel must be out of view (transparent) area. (Do not design enclosure presses the view area to protect from miss input)
- -2. Enclosure edge must be between view area & Guaranteed active area.
 (Enclosure edge must not touch with view area)
- -3. We recommend the material of support to fix touch panel is elastic material.
- -4. Do not bond top surface (film) of touch panel with enclosure.
- -5. The corner parts (fig.*) has conductivity. Do not touch any metal part after mounting.
- -6. Special design is required for water resistance use.

9. RELIABILITY TEST CONDITIONS

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C ,Dry t=240 hrs	
Low Temperature Operation	-20±3°C, Dry t=240 hrs	
High Temperature Storage	80±3°C , Dry t=240 hrs	1,2
Low Temperature Storage	-30±3°C ,Dry t=240 hrs	1,2
-15°C ~ 25°C ~ 70°C Thermal Shock Test 30 m in. 5 min. 30 min. (1 cycle) Total 100 cycle(Dry)		1,2
Humidity Test	60 °C, Humidity 90%, 240 hrs	
Vibration Test (Packing)	Sweep frequency: 10 ~ 55 ~ 10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	

- Note(1) Condensation of water is not permitted on the module.
- Note(2) The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).
- Note(3) The module shouldn't be tested over one condition, and all the tests are independent.
- Note(4) All reliability tests should be done without the protective film.

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

10. USE PRECAUTIONS

10-1 Handling precautions

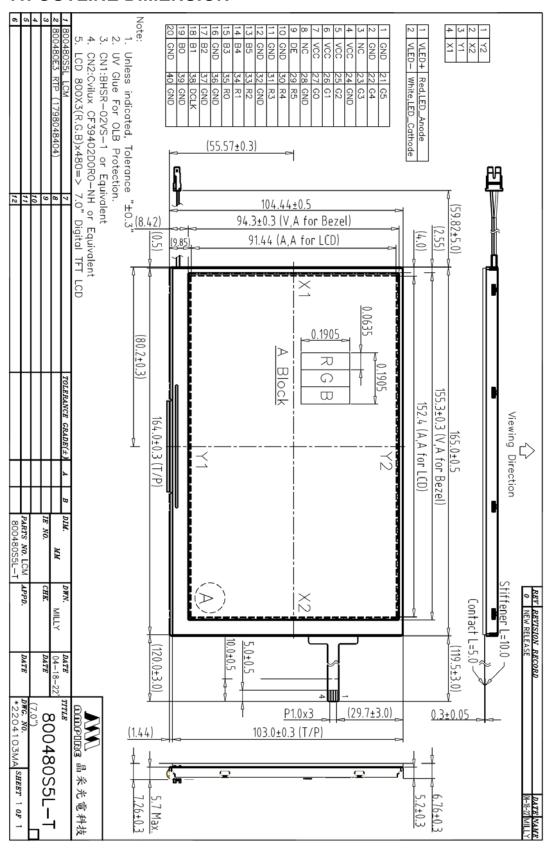
- (1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- (2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- (3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- (1) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

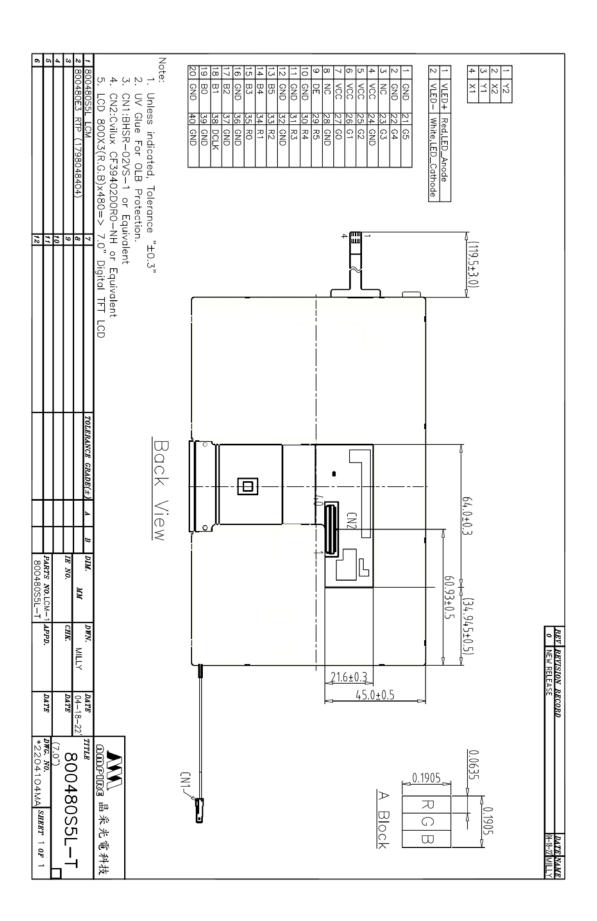
10-2 Installing precautions

- (1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- (2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- (3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- (4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off

10-3 Storage precautions

- (1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- (2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- (3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.


10-4 Operating precautions


- (1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- (2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- (3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- (4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- (5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- (6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- (7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- (8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

10-5 Other

- (1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- (2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- (3) AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products..

11. OUTLINE DIMENSION

